

Yaraskavitch, Marshall, Hawkins,

Gibson, Crocker

Ressources naturelles

2 of 35

Some Context

Ressources naturelles Canada

3 of 35

Outline

- **Purpose**
- Geometry
 - **Optimal Pointings**
- Finding the Satellite ►
 - Requirements
 - **Coordinate Transforms**
- **Operation**
- Results
 - RS2
- **Accuracy Testing**
 - Vs. RPT Results
 - Vs. STK
- **Conclusions**

Canada Centre for Remote Sensing Earth Sciences Sector

RS-1 Transponder

4 of 35

5 of 35

Canadä'

7 of 35

Geo-Hazards In-SAR Study RS-1 Imagery Little Smokey

Ressources naturelles

Canada

Purpose in Developing **TSP**

Determine Azimuth & Elevation pointings for RS-2

- Arbitrary location on earth
- Initially for RS-2 transponder
- Extended to other satellites:
 - RS-1, ENVISAT, TerraSAR-X, ALOS COSMO-SkyMed
- Extended for CRs and other targets
- General need for user community

Yaw-Steered Pointing – RS-2

$$\frac{d\phi}{dt} = \frac{d}{dt} \left(\frac{4\pi R}{\lambda} \right) = 0$$

$$\frac{d}{dt} \left(\left| \vec{P}_s(t) - \vec{P}_o \right| \right) = \frac{dR}{dt} = 0$$

- Requires Target location
- Requires Satellite location

Non-steered Pointing - RS-1

11 of 35

$$\vec{R}(t) \cdot \vec{v}(t) = 0$$

$$\left(\vec{P}_s(t) - \vec{P}_o\right) \cdot \frac{d\vec{P}_s(t)}{dt} = 0$$

- Require Satellite location
- Require Satellite velocity

12 of 35

Finding Satellite Position

How do we implement this? –Use NORAD TLEs

- Freely available
- Standard for Orbit description
- Well established propagators available for development
- SGP-4 (Simplified General Perturbations) Propagator
 - Position, velocity wrt time from TLEs
 - Existing MATLAB® code
- Other issues
 - Coordinate frames
 - Calculating Pointings

Pointing Requirements

Angular Resolution

- $\Delta\theta = \pm 0.01^{\circ}$ for azimuth and elevation
- For a target R=1000 km, Δs = ±170 m

Time Resolution

- Not crucial for 'event' time
 - few seconds
- Crucial for orbit propagation.
 - $v \sim 7.5 \text{ km/s for RS-1}$
 - Can therefore travel 0.17 km in ~0.02 s

$$\Delta t = \frac{\Delta s}{v} = 0.02 \text{ s}$$

Canadä

RK Hawkins

Coordinate Transforms

Propagator output:

- True Equator Mean Equinox (TEME) frame
- X axis in direction of vernal equinox, Z axis of rotation

Optimal satellite position calculation:

- Earth Centred, Earth Fixed (ECEF)
 - X axis points towards $(0^{\circ},0^{\circ})$, Z axis of rotation
- Local vertical (ENU) (East, North, Up) ⇒ (X,Y,Z)

Azimuth and Elevation Calculation:

Local Polar Coordinates (LPC) (Az, El, Range)

15 of 35

Coordinate Transforms

True Equator Mean Equinox (TEME)

$$\vec{r}_{PEF} = \begin{bmatrix} \cos(-\theta_{GMST}) & \sin(-\theta_{GMST}) & 0\\ -\sin(-\theta_{GMST}) & \cos(-\theta_{GMST}) & 0\\ 0 & 0 & 1 \end{bmatrix} \vec{r}_{TEME}$$

 $\vec{r}_{PEF} = \begin{bmatrix} \cos(-\theta_{GMST}) & \sin(-\theta_{GMST}) & 0 \\ -\sin(-\theta_{GMST}) & \cos(-\theta_{GMST}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \vec{r}_{TEME} \qquad \vec{v}_{PEF} = \begin{bmatrix} \cos(-\theta_{GMST}) & \sin(-\theta_{GMST}) & 0 \\ -\sin(-\theta_{GMST}) & \cos(-\theta_{GMST}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \vec{v}_{TEME} - \alpha(\vec{\omega}_{Earth} \times \vec{r}_{PE})$ $\alpha = \begin{cases} 0 & \text{non-steered SARs} \\ 1 & \text{yaw steered SARs} \end{cases}$

Earth Centred Earth Fixed (ECEF)

Latitude λ, longitude φ

$$\vec{r}_{satellite_ENU} = \begin{bmatrix} -\sin\phi & \cos\phi & 0 \\ -\cos\phi\sin\lambda & -\sin\lambda\sin\phi & \cos\lambda \\ \cos\phi\cos\lambda & \cos\lambda\sin\phi & \sin\lambda \end{bmatrix} \vec{r}_{satellite_ECEF} - \vec{r}_{observer_ECEF} - \vec{v}_{satellite_ENU} = \begin{bmatrix} -\sin\phi & \cos\phi & 0 \\ -\cos\phi\sin\lambda & -\sin\lambda\sin\phi & \cos\lambda \\ \cos\phi\cos\lambda & \cos\lambda\sin\phi & \sin\lambda \end{bmatrix} \vec{v}_{satellite_ECEF}$$

Local Vertical, East-North-Up (ENU)

$$range = \left| \vec{r}_{ENU} \right| \qquad azimuth = \arctan \left(\frac{y_{ENU}}{x_{ENU}} \right) \qquad elevation = \arctan \left(\frac{z_{ENU}}{\sqrt{x_{ENU}^2 + y_{ENU}^2}} \right)$$

Range, Azimuth, and Elevation (LPC)

Operation

- **SW** written in MATLAB®, two primary modes:
- **Fast**
 - Inputs: satellite, target location, and approximate event time
 - Orbit found from TLE archive
 - Outputs: Optimal pointing
- Custom
 - Inputs: satellite, target location, time window, initial time step, Specific TLE, and polar wobble coordinates
 - Orbit found from specific TLE
 - Outputs: Optimal pointing
- **Batch**
 - Table input/output

Opening Screen

Canadä

Canada Centre for Remote Sensing Earth Sciences Sector

RS-1 Transponder

18 of 35

Satellite Selection -Canned or Custom

Canada Centre for Remote Sensing Earth Sciences Sector

RS-1 Transponder

19 of 35

Target Location Selection - Canned or Custom

20 of 35

Target Location Query

🏄 launch_lla							
TPS-2: Target Location Query							
Decimal Degrees Latitude	Longitude	Altitude(m) Above reference ellipsoid					
North positive, South negative [-90,90]	East positive, West negative [-180,180]	Save					
Degrees:Minutes:Seconds—— Latitude	Longitude	Zone:					
D: Mt.		Easting(m): Back					
S:		Northing(m):					
		Convert					

21 of 35

Time Selection - UTC

Geometrical Confirmation

22 of 35

Field Geometry

Canadä

Example Textual Dump

24 of 35

25 of 35

RS-1 vs TSP Results

Ressources naturelles

Canada

Ottawa RPT Events 2007/08 to 2008/06

- RMS errors:
- Azimuth 0.06°
- Elevation 0.03°

26 of 35

ENVISAT vs TSP Results

Ressources naturelles

Canada

Res RPT Events 2005/07 to 2005/08

- RMS errors:
- Azimuth 0.11°
- Elevation 0.04°

Conclusions

- A general new tool, TSP-2, has been developed and validated for Target Pointing.
- Currently being used for Validation of RS-2
- Government and Commercial Clients
- Available through CCRS
- Hire a Student or Two!

Canada Centre for Remote Sensing Earth Sciences Sector

RS-1 Transponder

29 of 35

Canadä

Orbit Accuracy Testing

- Fistorical RS-1 and ENVISAT RPT pointings
 - RPT pointings empirically correct to ~0.1°

- Compare TSP to STK results
 - Premise: STK is industry standard propagator
 - STK allows TLE input

Pointing Error -TSP vs STK

- Pointings for events between 2008/07/02, 00:00:00 to 12:00:00
- Same TLE's used

Satellite	Location	Δ Azimuth (°)	Δ Elevation (°)	Δ Range (m)
RS2	ON0	0.001	0.001	-22.16
RS1	ON0	-0.001	-0.001	-9.94
ENVISAT	ON0	-0.001	0.000	-20.62
TERRASAR-X	ON0	0.000	-0.001	-5.51
ALOS	ON0	0.002	0.000	-20.46
RS2	NT0	-0.011	-0.001	-0.42
RS1	NT0	-0.001	0.000	-13.79
ENVISAT	NT0	0.001	-0.001	-17.74
TERRASAR-X	NT0	0.001	-0.001	-11.83
ALOS	NT0	-0.004	0.000	-18.48
RMS Average		0.004	0.001	15.66

Canadä

32 of 35

Absolute Position Error - TSP vs STK

Difference in ECEF position

Satellite	Location	Δ X (m)	Δ Y (m)	Δ Z (m)	Δ R (m)	Relative Error (%)
RS2	ON0	7.06	-23.22	-6.72	25.18	0.0004%
RS1	ON0	7.99	-11.87	2.30	14.49	0.0002%
ENVISAT	ON0	-2.77	2.89	20.56	20.95	0.0003%
TERRASAR-X	ON0	9.66	-25.84	-11.33	29.82	0.0004%
ALOS	ON0	-4.03	-3.40	15.31	16.20	0.0002%
RS2	NT0	-1.36	199.65	70.35	211.69	0.0030%
RS1	NT0	6.54	16.45	23.34	29.29	0.0004%
ENVISAT	NT0	-9.03	22.51	23.73	33.93	0.0005%
TERRASAR-X	NT0	15.94	37.83	29.97	50.83	0.0007%
ALOS	NT0	-8.14	7.74	19.75	22.72	0.0003%
RMS Average		8.23	65.95	28.60	72.36	0.0010%

Along/Across Track Error - TSP vs STK

		Along track	Radial	Across track
		error	error	error
Satellite	Location	$\hat{\mathcal{V}} \bullet \Delta r$	$\hat{r} \bullet \Delta r$	$\hat{v} \times \hat{r} \bullet \Delta r$
Gatomio		(m)	(m)	(m)
RS2	ON0	20.82	12.26	7.15
RS1	ON0	7.28	11.83	4.15
ENVISAT	ON0	16.99	12.02	-2.25
TERRASAR-X	ON0	27.07	11.98	3.71
ALOS	ON0	10.15	12.37	2.42
RS2	NT0	-210.90	16.86	6.65
RS1	NT0	22.44	16.95	-8.16
ENVISAT	NT0	29.23	17.08	-2.11
TERRASAR-X	NT0	46.79	17.08	-10.06
ALOS	NT0	14.79	17.20	1.14
RMS Average		70.61	14.77	5.57

- Majority of error in along-track direction (i.e. direction of velocity)
- Very small error in across-track direction

34 of 35

A Versatile Tools is available for Growing Community

- > \$4M in CRs by one Cdn Company in 2008
- InSAR Geohazards
 - Subsidence
 - Landslides
 - Plate shifting
- Phase Calibration
- Amplitude Calibration
- Positioning

Canada Centre for Remote Sensing Earth Sciences Sector

RS-1 Transponder

35 of 35

Reflector Installation Above Permafrost

References

Canadä

- FR Hoots and RL Roehrich. (1980). "Spacetrack Report #3: Models for Propagation of the NORAD Element Sets." US Air Force Aerospace Defense Command, Colorado Springs, C.O. 90p.
- DA Vallado, P Crawford, R Hujsak, TS Kelso. (2006). "Revisiting Spacetrack Report #3", AIAA 2006-6753, 88p.
- DA Vallado. (2001). "Fundamentals of Astrodynamics and Applications." Springer.
- Hawkins, RK, LD Teany, SK Srivastava, and SYK Tam, "RADARSAT precision transponder", in Advances in Space Research, Vol. 19, No.9, pp. 1455-1465.
- ---(2007). "Conversion of Geodetic coordinates to the Local Tangent Plane." Portland State Aerospace Society. Version 2.01 (2007.9.15)" http://www.psas.pdx.edu
- "NORAD Two-Line Element Set Format." Accessed 2008/05/14. http://celestrak.com/NORAD/documentation/tle-fmt.asp
- "Brief Introduction To TLEs And Satellite IDs." Accessed 2008/05/14. http://satobs.org/element.html

Keplerian Elements:

- Semi-major axis of orbit
- Eccentricity of orbit
- Mean motion
- Inclination
- Right ascension of ascending node
- Argument of perigee
- True anomaly
- Mean motion dot
- Mean motion dot dot
- Bstar drag parameter

http://www.mindspring.com/~n2wwd/html/orbital_description.html

